
27-November-2007 © Copyright Ian D. Romanick 2007

Computer Graphics Programming I

Agenda:
● Quiz #4

● Faster geometry:
• Vertex arrays
• Vertex buffer objects

● Work on term project

27-November-2007 © Copyright Ian D. Romanick 2007

Why vertex arrays?
 Immediate mode is slow

● Using a function call per data item carries
significant overhead

● Flexibility of interface make it more difficult for driver
to optimize

 Immediate mode is cumbersome
● Model data is typically stored as arrays of positions,

normals, etc.

● Application developers have to write code to
convert array data to repeated function calls

27-November-2007 © Copyright Ian D. Romanick 2007

Vertex Array Overview
Three step process:

● Provide pointer client memory containing data
• Must also describe the layout of the data
• Analogous to glTexImage2D

● Enable arrays that will be used

● Specify which array data to use to draw each
primitive

27-November-2007 © Copyright Ian D. Romanick 2007

Providing Array Data
Each data element that can be specified

between begin / end has an array
● Examples:

glVertex → glVertexPointer

glColor → glColorPointer

glNormal → glNormalPointer

glTexCoord → glTexCoordPointer

glFogCoord → glFogCoordPointer

No array entry-point for glMultiTexCoord
● Use glActiveTexture and glTexCoordPointer

27-November-2007 © Copyright Ian D. Romanick 2007

Providing Array Data (cont.)
Each function provides same data to GL:

● Number of data components
• Most data will have 2, 3, or 4 components
• May be implicit → normals always have 3 components

● Type of data

● Array stride
• Number of bytes from one element to the next
• Specifying zero implies that the data is packed

● Pointer to the array

27-November-2007 © Copyright Ian D. Romanick 2007

Array Stride
Consider this data:

const GLfloat my_data[] = {
 /* position normal */
 1.0, 1.0, 1.0, 0.0, 0.0, 1.0,
 1.0, -1.0, 1.0, 0.0, 0.0, 1.0,
 -1.0, -1.0, 1.0, 0.0, 0.0, 1.0,
 -1.0, 1.0, 1.0, 0.0, 0.0, 1.0,
 ...
};

From one normal to the next there are 6 floats
● The stride is 6 * sizeof(GLfloat)

27-November-2007 © Copyright Ian D. Romanick 2007

Array Stride (cont.)
Data need not be homogeneous:

struct data {
 GLfloat position[4];
 GLfloat normal[3];
 GLubyte color[3];
};

Here stride is just sizeof(struct data)
● This is useful for loading data directly from disk (or

network) into a buffer

27-November-2007 © Copyright Ian D. Romanick 2007

Example
struct data {
 GLfloat position[4];
 GLfloat normal[3];
 GLubyte color[3];
};

struct data *model;

void setup_arrays(void)
{
 glVertexPointer(4, GL_FLOAT, sizeof(struct data),
 & model->position);
 glNormalPointer(GL_FLOAT, sizeof(struct data),
 & model->normal);
 glColorPointer(3, GL_UNSIGNED_BYTE,
 sizeof(struct data), & model->color);
}

27-November-2007 © Copyright Ian D. Romanick 2007

Enabling Arrays
Each array that will be used must be enabled

● Arrays are in client memory, and the enables are
client state

● Use glEnableClientState instead of glEnable

Each array has a name
● GL_VERTEX_ARRAY, GL_COLOR_ARRAY,
GL_NORMAL_ARRAY, etc.

27-November-2007 © Copyright Ian D. Romanick 2007

Drawing with a Vertex Array
There are 3 common ways to draw:

● Blocks of vertices in order

● Arbitrary vertices, one at a time

● Arbitrary vertices, en masse

27-November-2007 © Copyright Ian D. Romanick 2007

glDrawArrays
Draw a group of primitives using a range of

vertices in order
glDrawArrays(GLenum mode,
 GLint first_element, GLsizei count);

Directly from the manual page:
“...uses count sequential elements from each enabled
array to construct a sequence of geometric primitives,
beginning with element first. mode specifies what kind
of primitives are constructed, and how the array elements
construct those primitives.”

27-November-2007 © Copyright Ian D. Romanick 2007

glArrayElement
Specify one array element to use with one call

● Used like immediate mode functions
glArrayElement(GLint i);

● Example:
glBegin(GL_TRIANGLES);
while (!done) {
 done = get_next_triangle(indices);
 glArrayElement(indices[0]);
 glArrayElement(indices[1]);
 glArrayElement(indices[2]);
}
glEnd();

27-November-2007 © Copyright Ian D. Romanick 2007

glDrawElements
The mostly commonly used drawing function

glDrawElements(GLenum mode, GLsizei count,
 GLenum type, const GLvoid *indices);

indices points to an array of elements that
are used to draw primitives
● type specifies what type of data indices is

• Can be GL_UNSIGNED_INT, GL_UNSIGNED_SHORT, or
GL_UNSIGNED_BYTE

27-November-2007 © Copyright Ian D. Romanick 2007

glDrawElements (cont.)
void fake_glDrawElements(GLenum mode, GLsizei count,
 GLenum type, const GLvoid *indices)
{
 glBegin(mode);
 for (GLsizei i = 0; i < count; i++) {
 switch(type) {
 case GL_UNSIGNED_BYTE:
 glArrayElement(((GLubyte *)indices)[i]);
 break;
 case GL_UNSIGNED_SHORT:
 glArrayElement(((GLshort *)indices)[i]);
 break;
 case GL_UNSIGNED_INT:
 glArrayElement(((GLuint *)indices)[i]);
 break;
 }
 }
 glEnd();
}

27-November-2007 © Copyright Ian D. Romanick 2007

glMultiDrawArrays
Specify multiple glDrawArrays-like draw calls

with a single call:
glMultiDrawArrays(GLenum mode,
 GLint *first, GLsizei *count,
 GLsizei primcount);

primcount specifies the number of values
pointed to by first and count.

27-November-2007 © Copyright Ian D. Romanick 2007

glMultiDrawElements
Specify multiple glDrawElementss-like draw

calls with a single call:
glMultiDrawElements(GLenum mode,
 const GLsizei *count, GLenum type,
 const GLvoid **indices,
 GLsizei primcount);

primcount specifies the number of values
pointed to by count and indices.

27-November-2007 © Copyright Ian D. Romanick 2007

References
http://www.opengl.org/sdk/docs/man/xhtml/glVertexPointer.xml

http://www.opengl.org/sdk/docs/man/xhtml/glDrawArrays.xml

http://www.opengl.org/sdk/docs/man/xhtml/glDrawElements.xml

http://www.opengl.org/sdk/docs/man/xhtml/glVertexPointer.xml
http://www.opengl.org/sdk/docs/man/xhtml/glDrawArrays.xml
http://www.opengl.org/sdk/docs/man/xhtml/glDrawElements.xml

27-November-2007 © Copyright Ian D. Romanick 2007

Break

27-November-2007 © Copyright Ian D. Romanick 2007

Client memory?
Unlike textures, vertex arrays are not kept

● The GL copies the data during the drawing call,
uses it, then forgets it

● Allows easy changing of data between drawing calls

● Prevents optimizations of static data
• Data must be re-uploaded to the card on every draw call!

27-November-2007 © Copyright Ian D. Romanick 2007

Compiled Vertex Arrays
Original solution:

● Application can “lock” a range of data
glLockArraysEXT(GLint first, GLsizei count);
glUnlockArraysEXT(void);

• Agreement between application an driver that the
application will not modify locked data

• Allows driver to copy data to card once
• Driver can also cache transformed data

Very limited: can only lock one range at a time
● Want something that works like texture objects

27-November-2007 © Copyright Ian D. Romanick 2007

Buffer Objects
Generic objects that can hold data in server

memory
● Similar to textures, but without formating semantics

Data in these objects can be used in place of
client memory data
● Originally intended for vertex data, but can be used

for other things as well

GL_ARB_vertex_buffer_object extension
● Part of core in 1.4

27-November-2007 © Copyright Ian D. Romanick 2007

Creating Buffer Objects
 Intentionally very similar to textures

void glBindBuffer(GLenum target, GLuint buffer);
void glDeleteBuffers(GLsizei n,
 const GLuint *buffers);
void glGenBuffers(GLsizei n, GLuint *buffers);
GLboolean glIsBuffer(GLuint buffer);

 Initially only two targets:
● GL_ARRAY_BUFFER – Data used for vertex arrays

● GL_ELEMENT_ARRAY_BUFFER – Data used for
element data

 Bind buffer 0 to disable buffer object for that target

27-November-2007 © Copyright Ian D. Romanick 2007

Filling Buffers
Writes data to the currently bound buffer object

● Analogous to glTexImage2D / glTexSubImage2D
void glBufferData(GLenum target, GLsizeiptr size,
 const GLvoid *data, GLenum usage);
void glBufferSubData(GLenum target,
 GLintptr offset, GLsizeiptr size,
 const GLvoid *data);

● Like textures, the targets must match

27-November-2007 © Copyright Ian D. Romanick 2007

Buffer Usage
The usage parameter tries to convey the

application's intention for the buffer
● Data “frequency”:

• Stream – data is specified once and used a few times
• Static – data is specified ones and used many times
• Dynamic – data is specified and used many times

● Data “usage”:
• Draw – data used as source for drawing
• Read – data copied from GL and read back to client
• Copy – data copied from GL and used as source for

drawing

27-November-2007 © Copyright Ian D. Romanick 2007

GL_STREAM_*
From the spec:

● GL_STREAM_DRAW – The data store contents will be
specified once by the application, and used at most
a few times as the source of a GL (drawing)
command.

● GL_STREAM_READ – The data store contents will be
specified once by reading data from the GL, and
queried at most a few times by the application.

● GL_STREAM_COPY – The data store contents will be
specified once by reading data from the GL, and
used at most a few times as the source of a GL
(drawing) command.

27-November-2007 © Copyright Ian D. Romanick 2007

GL_STATIC_*
From the spec:

● GL_STATIC_DRAW – The data store contents will be
specified once by the application, and used many
times as the source for GL (drawing) commands.

● GL_STATIC_READ – The data store contents will be
specified once by reading data from the GL, and
queried many times by the application.

● GL_STATIC_COPY – The data store contents will be
specified once by reading data from the GL, and
used many times as the source for GL (drawing)
commands.

27-November-2007 © Copyright Ian D. Romanick 2007

GL_DYNAMIC_*
From the spec:

● GL_DYNAMIC_DRAW – The data store contents will
be respecified repeatedly by the application, and
used many times as the source for GL (drawing)
commands.

● GL_DYNAMIC_READ – The data store contents will
be respecified repeatedly by reading data from the
GL, and queried many times by the application.

● GL_DYNAMIC_COPY – The data store contents will
be respecified repeatedly by reading data from the
GL, and used many times as the source for GL
(drawing) commands.

27-November-2007 © Copyright Ian D. Romanick 2007

Using Buffer Object Data
When a buffer is bound, the pointer parameters

various functions have new meanings
● The pointer parameter to glVertexPointer

and friends becomes an offset into the currently
bound GL_ARRAY_BUFFER.

● The indices parameter to glDrawElements and
friends becomes an offset into the currently bound
GL_ELEMENT_ARRAY_BUFFER.

27-November-2007 © Copyright Ian D. Romanick 2007

Buffer Mapping
Unlike textures, can get a pointer to the

memory of the buffer
● Functionality exists to make it easier to port vertex

arrays to buffer objects

● Cannot use a mapped buffer for rendering

● Cannot pass the mapped pointer back into the GL
GLvoid *glMapBuffer(GLenum target, GLenum access);
void glUnmapBuffer(GLenum target);

• access must be one of GL_READ_ONLY,
GL_WRITE_ONLY, or GL_READ_WRITE

27-November-2007 © Copyright Ian D. Romanick 2007

Buffer Access
Use the correct access mode!

● GL_READ_ONLY buffers may be mapped in a way
that writing will cause the application to crash

● GL_WRITE_ONLY buffers may not be loaded with
the contents of the buffer (they may be filled with
garbage)

● GL_READ_WRITE buffers may force the driver to
copy the buffer from the card and copy the data
back on unmap

27-November-2007 © Copyright Ian D. Romanick 2007

Buffer Mapping Woes
Do not map a large buffer for writing and only

modify a small portion
● Some drivers implement mapping by copying data

off the card into system memory, then copy the
system memory back on unmap
• Radeon drivers work this way

● Mapping a 16MiB buffer to modify 4 bytes causes
32MiB to be copied (16MiB down and up)
• Use glBufferSubData instead

27-November-2007 © Copyright Ian D. Romanick 2007

Buffer Subrange
Apple has an extension to work around this

● Before unmapping a buffer, tell the GL what regions
were modified.

void glFlushMappedBufferRangeAPPLE(GLenum target,
 GLintptr offset, GLsizeiptr size);

● GL_APPLE_flush_buffer_range extension
• Supported on all drivers in OS X 10.3 and later

● Similar functionality will exist in OpenGL 3.0

27-November-2007 © Copyright Ian D. Romanick 2007

Next week...
Discuss final

Work on term projects

27-November-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

