
27-November-2007 © Copyright Ian D. Romanick 2007

Computer Graphics Programming I

Agenda:
● Quiz #4

● Faster geometry:
• Vertex arrays
• Vertex buffer objects

● Work on term project

27-November-2007 © Copyright Ian D. Romanick 2007

Why vertex arrays?
 Immediate mode is slow

● Using a function call per data item carries
significant overhead

● Flexibility of interface make it more difficult for driver
to optimize

 Immediate mode is cumbersome
● Model data is typically stored as arrays of positions,

normals, etc.

● Application developers have to write code to
convert array data to repeated function calls

27-November-2007 © Copyright Ian D. Romanick 2007

Vertex Array Overview
Three step process:

● Provide pointer client memory containing data
• Must also describe the layout of the data
• Analogous to glTexImage2D

● Enable arrays that will be used

● Specify which array data to use to draw each
primitive

27-November-2007 © Copyright Ian D. Romanick 2007

Providing Array Data
Each data element that can be specified

between begin / end has an array
● Examples:

glVertex → glVertexPointer

glColor → glColorPointer

glNormal → glNormalPointer

glTexCoord → glTexCoordPointer

glFogCoord → glFogCoordPointer

No array entry-point for glMultiTexCoord
● Use glActiveTexture and glTexCoordPointer

27-November-2007 © Copyright Ian D. Romanick 2007

Providing Array Data (cont.)
Each function provides same data to GL:

● Number of data components
• Most data will have 2, 3, or 4 components
• May be implicit → normals always have 3 components

● Type of data

● Array stride
• Number of bytes from one element to the next
• Specifying zero implies that the data is packed

● Pointer to the array

27-November-2007 © Copyright Ian D. Romanick 2007

Array Stride
Consider this data:

const GLfloat my_data[] = {
 /* position normal */
 1.0, 1.0, 1.0, 0.0, 0.0, 1.0,
 1.0, -1.0, 1.0, 0.0, 0.0, 1.0,
 -1.0, -1.0, 1.0, 0.0, 0.0, 1.0,
 -1.0, 1.0, 1.0, 0.0, 0.0, 1.0,
 ...
};

From one normal to the next there are 6 floats
● The stride is 6 * sizeof(GLfloat)

27-November-2007 © Copyright Ian D. Romanick 2007

Array Stride (cont.)
Data need not be homogeneous:

struct data {
 GLfloat position[4];
 GLfloat normal[3];
 GLubyte color[3];
};

Here stride is just sizeof(struct data)
● This is useful for loading data directly from disk (or

network) into a buffer

27-November-2007 © Copyright Ian D. Romanick 2007

Example
struct data {
 GLfloat position[4];
 GLfloat normal[3];
 GLubyte color[3];
};

struct data *model;

void setup_arrays(void)
{
 glVertexPointer(4, GL_FLOAT, sizeof(struct data),
 & model->position);
 glNormalPointer(GL_FLOAT, sizeof(struct data),
 & model->normal);
 glColorPointer(3, GL_UNSIGNED_BYTE,
 sizeof(struct data), & model->color);
}

27-November-2007 © Copyright Ian D. Romanick 2007

Enabling Arrays
Each array that will be used must be enabled

● Arrays are in client memory, and the enables are
client state

● Use glEnableClientState instead of glEnable

Each array has a name
● GL_VERTEX_ARRAY, GL_COLOR_ARRAY,
GL_NORMAL_ARRAY, etc.

27-November-2007 © Copyright Ian D. Romanick 2007

Drawing with a Vertex Array
There are 3 common ways to draw:

● Blocks of vertices in order

● Arbitrary vertices, one at a time

● Arbitrary vertices, en masse

27-November-2007 © Copyright Ian D. Romanick 2007

glDrawArrays
Draw a group of primitives using a range of

vertices in order
glDrawArrays(GLenum mode,
 GLint first_element, GLsizei count);

Directly from the manual page:
“...uses count sequential elements from each enabled
array to construct a sequence of geometric primitives,
beginning with element first. mode specifies what kind
of primitives are constructed, and how the array elements
construct those primitives.”

27-November-2007 © Copyright Ian D. Romanick 2007

glArrayElement
Specify one array element to use with one call

● Used like immediate mode functions
glArrayElement(GLint i);

● Example:
glBegin(GL_TRIANGLES);
while (!done) {
 done = get_next_triangle(indices);
 glArrayElement(indices[0]);
 glArrayElement(indices[1]);
 glArrayElement(indices[2]);
}
glEnd();

27-November-2007 © Copyright Ian D. Romanick 2007

glDrawElements
The mostly commonly used drawing function

glDrawElements(GLenum mode, GLsizei count,
 GLenum type, const GLvoid *indices);

indices points to an array of elements that
are used to draw primitives
● type specifies what type of data indices is

• Can be GL_UNSIGNED_INT, GL_UNSIGNED_SHORT, or
GL_UNSIGNED_BYTE

27-November-2007 © Copyright Ian D. Romanick 2007

glDrawElements (cont.)
void fake_glDrawElements(GLenum mode, GLsizei count,
 GLenum type, const GLvoid *indices)
{
 glBegin(mode);
 for (GLsizei i = 0; i < count; i++) {
 switch(type) {
 case GL_UNSIGNED_BYTE:
 glArrayElement(((GLubyte *)indices)[i]);
 break;
 case GL_UNSIGNED_SHORT:
 glArrayElement(((GLshort *)indices)[i]);
 break;
 case GL_UNSIGNED_INT:
 glArrayElement(((GLuint *)indices)[i]);
 break;
 }
 }
 glEnd();
}

27-November-2007 © Copyright Ian D. Romanick 2007

glMultiDrawArrays
Specify multiple glDrawArrays-like draw calls

with a single call:
glMultiDrawArrays(GLenum mode,
 GLint *first, GLsizei *count,
 GLsizei primcount);

primcount specifies the number of values
pointed to by first and count.

27-November-2007 © Copyright Ian D. Romanick 2007

glMultiDrawElements
Specify multiple glDrawElementss-like draw

calls with a single call:
glMultiDrawElements(GLenum mode,
 const GLsizei *count, GLenum type,
 const GLvoid **indices,
 GLsizei primcount);

primcount specifies the number of values
pointed to by count and indices.

27-November-2007 © Copyright Ian D. Romanick 2007

References
http://www.opengl.org/sdk/docs/man/xhtml/glVertexPointer.xml

http://www.opengl.org/sdk/docs/man/xhtml/glDrawArrays.xml

http://www.opengl.org/sdk/docs/man/xhtml/glDrawElements.xml

http://www.opengl.org/sdk/docs/man/xhtml/glVertexPointer.xml
http://www.opengl.org/sdk/docs/man/xhtml/glDrawArrays.xml
http://www.opengl.org/sdk/docs/man/xhtml/glDrawElements.xml

27-November-2007 © Copyright Ian D. Romanick 2007

Break

27-November-2007 © Copyright Ian D. Romanick 2007

Client memory?
Unlike textures, vertex arrays are not kept

● The GL copies the data during the drawing call,
uses it, then forgets it

● Allows easy changing of data between drawing calls

● Prevents optimizations of static data
• Data must be re-uploaded to the card on every draw call!

27-November-2007 © Copyright Ian D. Romanick 2007

Compiled Vertex Arrays
Original solution:

● Application can “lock” a range of data
glLockArraysEXT(GLint first, GLsizei count);
glUnlockArraysEXT(void);

• Agreement between application an driver that the
application will not modify locked data

• Allows driver to copy data to card once
• Driver can also cache transformed data

Very limited: can only lock one range at a time
● Want something that works like texture objects

27-November-2007 © Copyright Ian D. Romanick 2007

Buffer Objects
Generic objects that can hold data in server

memory
● Similar to textures, but without formating semantics

Data in these objects can be used in place of
client memory data
● Originally intended for vertex data, but can be used

for other things as well

GL_ARB_vertex_buffer_object extension
● Part of core in 1.4

27-November-2007 © Copyright Ian D. Romanick 2007

Creating Buffer Objects
 Intentionally very similar to textures

void glBindBuffer(GLenum target, GLuint buffer);
void glDeleteBuffers(GLsizei n,
 const GLuint *buffers);
void glGenBuffers(GLsizei n, GLuint *buffers);
GLboolean glIsBuffer(GLuint buffer);

 Initially only two targets:
● GL_ARRAY_BUFFER – Data used for vertex arrays

● GL_ELEMENT_ARRAY_BUFFER – Data used for
element data

 Bind buffer 0 to disable buffer object for that target

27-November-2007 © Copyright Ian D. Romanick 2007

Filling Buffers
Writes data to the currently bound buffer object

● Analogous to glTexImage2D / glTexSubImage2D
void glBufferData(GLenum target, GLsizeiptr size,
 const GLvoid *data, GLenum usage);
void glBufferSubData(GLenum target,
 GLintptr offset, GLsizeiptr size,
 const GLvoid *data);

● Like textures, the targets must match

27-November-2007 © Copyright Ian D. Romanick 2007

Buffer Usage
The usage parameter tries to convey the

application's intention for the buffer
● Data “frequency”:

• Stream – data is specified once and used a few times
• Static – data is specified ones and used many times
• Dynamic – data is specified and used many times

● Data “usage”:
• Draw – data used as source for drawing
• Read – data copied from GL and read back to client
• Copy – data copied from GL and used as source for

drawing

27-November-2007 © Copyright Ian D. Romanick 2007

GL_STREAM_*
From the spec:

● GL_STREAM_DRAW – The data store contents will be
specified once by the application, and used at most
a few times as the source of a GL (drawing)
command.

● GL_STREAM_READ – The data store contents will be
specified once by reading data from the GL, and
queried at most a few times by the application.

● GL_STREAM_COPY – The data store contents will be
specified once by reading data from the GL, and
used at most a few times as the source of a GL
(drawing) command.

27-November-2007 © Copyright Ian D. Romanick 2007

GL_STATIC_*
From the spec:

● GL_STATIC_DRAW – The data store contents will be
specified once by the application, and used many
times as the source for GL (drawing) commands.

● GL_STATIC_READ – The data store contents will be
specified once by reading data from the GL, and
queried many times by the application.

● GL_STATIC_COPY – The data store contents will be
specified once by reading data from the GL, and
used many times as the source for GL (drawing)
commands.

27-November-2007 © Copyright Ian D. Romanick 2007

GL_DYNAMIC_*
From the spec:

● GL_DYNAMIC_DRAW – The data store contents will
be respecified repeatedly by the application, and
used many times as the source for GL (drawing)
commands.

● GL_DYNAMIC_READ – The data store contents will
be respecified repeatedly by reading data from the
GL, and queried many times by the application.

● GL_DYNAMIC_COPY – The data store contents will
be respecified repeatedly by reading data from the
GL, and used many times as the source for GL
(drawing) commands.

27-November-2007 © Copyright Ian D. Romanick 2007

Using Buffer Object Data
When a buffer is bound, the pointer parameters

various functions have new meanings
● The pointer parameter to glVertexPointer

and friends becomes an offset into the currently
bound GL_ARRAY_BUFFER.

● The indices parameter to glDrawElements and
friends becomes an offset into the currently bound
GL_ELEMENT_ARRAY_BUFFER.

27-November-2007 © Copyright Ian D. Romanick 2007

Buffer Mapping
Unlike textures, can get a pointer to the

memory of the buffer
● Functionality exists to make it easier to port vertex

arrays to buffer objects

● Cannot use a mapped buffer for rendering

● Cannot pass the mapped pointer back into the GL
GLvoid *glMapBuffer(GLenum target, GLenum access);
void glUnmapBuffer(GLenum target);

• access must be one of GL_READ_ONLY,
GL_WRITE_ONLY, or GL_READ_WRITE

27-November-2007 © Copyright Ian D. Romanick 2007

Buffer Access
Use the correct access mode!

● GL_READ_ONLY buffers may be mapped in a way
that writing will cause the application to crash

● GL_WRITE_ONLY buffers may not be loaded with
the contents of the buffer (they may be filled with
garbage)

● GL_READ_WRITE buffers may force the driver to
copy the buffer from the card and copy the data
back on unmap

27-November-2007 © Copyright Ian D. Romanick 2007

Buffer Mapping Woes
Do not map a large buffer for writing and only

modify a small portion
● Some drivers implement mapping by copying data

off the card into system memory, then copy the
system memory back on unmap
• Radeon drivers work this way

● Mapping a 16MiB buffer to modify 4 bytes causes
32MiB to be copied (16MiB down and up)
• Use glBufferSubData instead

27-November-2007 © Copyright Ian D. Romanick 2007

Buffer Subrange
Apple has an extension to work around this

● Before unmapping a buffer, tell the GL what regions
were modified.

void glFlushMappedBufferRangeAPPLE(GLenum target,
 GLintptr offset, GLsizeiptr size);

● GL_APPLE_flush_buffer_range extension
• Supported on all drivers in OS X 10.3 and later

● Similar functionality will exist in OpenGL 3.0

27-November-2007 © Copyright Ian D. Romanick 2007

Next week...
Discuss final

Work on term projects

27-November-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

